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A many-body perturbation treatment of the harmonically vibrating
crystal lattice, containing a fixed distribution of imperfections, is
presented. Using the fact that Lifshitz’ Green’s functions can be
replaced by double-time thermal Green’s functions of displacement,
and invoking the connection between the space Fourier transforms
of the latter functions and the finite temperature, phonon propagator
basic expressions of the Lifshitz theory are recovered by the method
of Feynmann diagrams. Thus, the Dyson equation for the defective
lattice Green’s function matrix and a series expansion of the Helmholz
free energy are obtained by graphical summations to infinite order.
In view of the formal exactness of the Lifshitz method, the imperfect
crystal is found to provide an example of final results of infinite order
perturbation theory, which can be rigorously proved to remain valid
despite the occurrence of divergencies in underlying series. It is pro-
posed that a partial summation version of the propagator treatment
may furnish a useful approximation scheme in certain cases of non-
local force field alterations.

I. INTRODUCTION

We discuss in this paper some effects of fixed distributions of mass changes
and force constant alterations on a harmonically vibrating crystal lattice.
Green’s function techniques originated by Lifshitz! and subsequently extended
and elaborated by several authors?2? have played a crucial role in many stud-
ies 4,5 dealing with phenomena conditioned by the dynamics of non-perfect
solids. Leaving aside an interesting and sometimes highly pertinent
interpretation in terms of formal scattering theory 1,68 the Lifshitz method
may be characterized as an elegant version of classical normal mode algebra
which utilizes Green’s functions to overcome the loss of translational invar-
iance. (The severity of this loss may readily be appreciated by recalling that
lattice dynamics invariably relies on translational symmetry in reducing the
mathematical description of a perfect lattice to manageable proportions.)
The transition to quantum mechanics is usually introduced as a final step
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awaiting a successful completion of the normal mode analysis. In principle
this approach suffices to account for a wide variety of defect induced properties.
This formal power notwithstanding, the theory in its rigorous form is not
amenable to numerical analysis when non-local imperfections come into play.
It is convenient, therefore, to adopt an alternative viewpoint which relates
the Lifshitz method to the more general formalism of current many-body
theory within the framework of which several systematic approximation
schemes have been developed. As brought to attention by Elliot and Taylor ?
Lifshitz’s Green’s functions may be replaced by double-time thermal
Green’s functions of displacement.’® Applying a quantum mechanical formu-
lation from the outset these authors recovered the fundamental expressions
of the Lifshitz theory by taking as their starting point the equations governing
the time development of retarded and advanced Green’s functions. It seems
natural to assume the perturbation expansion of the phonon propagator to
provide an alternative way of handling the situation. The object of the present
paper is to corroborate this conjecture. A related problem has been studied
by Maradudin ! who investigated the effects of mass disorder and also, as
a particular case, the effects of an isolated mass defect on the propagator.
The propagator treatment of mass imperfections was related, mainly, to the
construction of correlation functions. In another part of the paper, devoted
to the elucidation of fixed defect configurations, equilibrium properties were
discussed from the standpoint of the Lifshitz theory (or rather an elabo-
rated version contributed, in part, by Maradudin). Including force constant
perturbations but leaving aside situations where an averaging over defect
configurations is called for, we shall adopt a somewhat different viewpoint
by regarding many-body perturbation theory as an alternative route to de-
fective lattice double-time thermal Green’s functions. We thus rederive also
those pivotal relations of the Lifshitz formalism which pertain to equilibrium
properties, ¢.e. location of modified mode frequencies, thermodynamic state
functions etc. On the practical level this procedure might be of some value in
connection with defects which are non-local in the direct lattice space, since
it immediately suggests that we exploit occasional occurrences of quasilocali-
zation in k space by invoking selective summation techniques.

II. DOUBLE-TIME GREEN’S FUNCTIONS AND THEIR CONNECTION WITH
THE PHONON PROPAGATOR

With a slight deviation from Zubarev’s notation 1° the retarded and ad-
vanced Green’s functions for any pair of Heisenberg operators
A(t)=exp(itH)A exp(—1itH)

B(t")=exp(it'H)B exp(—1it'H) (I1-1)
may be written as

G(A,Btt'),, =2r{ A{t):BE),,
KA@YB(E'))>,= —10(t—t')[A(8),B(E")]> (11-2)
KA@)B(E')y>, =100t — )<[A(8),B(E")]>
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where
6(t) =1,t>0; 6(t)=0, t<0
and where <....)> denotes the expectation value of an operator averaged

over the appropriate ensemble, which in our case is the canonical ensemble.
Since we shall deal exclusively with Bose operators, #=1. In writing (II—-1)
we have, for typographic simplicity, set 7= 1. Identifying 4(¢) and B(t') with
operators representing atomic excursions

Ay =u,(lnt); B(t')=wuy(l'n' t')

the fundamental equations *

Gy(0)(Mgw? — @) = Gy(w)Lo(w) =1 (I1-3a)

G(w)(Mw?— @)= G(w)[Ly(w) — IL(w)] = G(w)L(w) =1 (1X-3b)
and thereby also

G=Gy+ GyoLG (=) G=[1— Gy(w)oL(w)]1Gy(w) (I1-3c)

(where My(M) is the perfect (defective) lattice diagonal mass matrix, @q(P)
is a 3nV x 3nN perfect (defective) real and symmetric force constant matrix,
and where n is the number of atoms in each of the N unit cells contained in
the cyclic lattice under consideration)

may be derived by

(i) subjecting the equations of motion for Gy(4,B;tt'),, and G(4,B;tt’),,
to an additional time differentiation followed by a time Fourier trans-
formation ®

and by subsequently
(i) continuing Gy(4,B;w),, and G(4,B;w),, analytically into the upper
(lower) half of the w-plane and setting 10 **
G (4,B;0) =G (4,B;0),, Im(w)>0
G 0)(4,B;0) = G g)(4,Bs00),, Tm(w) <0 (I1-4)
In the version of the Lifshitz theory most frequently encountered?? L,
(w) is introduced by writing down the classical time-independent equations
of motion while (II-3a,b) is taken as the defining relation(s) for G,
As noted by Elliot and Taylor ® the prescription
Go(4,B;w+10) — G )(4,B;0 —10) = — 2m[exp(fw) — 1]/ (4, B;0)
p=1/(kT), w real (I1-5)

for obtaining correlation functions

* In the following w is complex unless otherwise indicated. Furthermore, time Fourier trans-
forms will be written as G(w), while space Fourier transforms will appear as small letters, .e. g(it')
or g(w).

¥* In (II-4) and below the symbol (0) will be employed as subscript(s) in general expressions
and statements pertaining to perfect and imperfect lattice quantities alike.
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D<(4,Bit,t')=<B(t")A(t)) 0= jw J 0)(4,B;w) exp[ —ie(t —t')]dw (1I-6a)

D> o) (A,Bit t') = CA)B(E')> 0= jw J 0)(4,B;w) exp(fw)exp[ —iw(t —t')dw
o real (II-6b)

from G (4,B;w), a theme elegantly expounded by Zubarev,!® renders
superfluous the complicated transformations from sums to integrals occurring
in the Lifshitz method. Posing the problem in reverse, i.e. setting out to cal-
culate G from D>,, D<,, we arrive at another way of obtaining (II-3).
A brief outline of the reasoning involved serves to summarize some expressions
which will be needed later on. In matrix notation Gy, D>, and D<, may
be written in terms of their k space analogues

910/ (KG K5 8", = 20 A (8); AN (8)0 (o)1)

a> ) (kj,K'5";tt") = Awilt) Al (t')) o)

A< (kg K'5"5t") = Aty (t) Awi(8)> o)

Axi(t) = axj(t) + at—i(t), i (t) = @' (t') + a—i(¢');

a'y; and a,; being the usual phonon creation and destruction operators.?
as

(I1-7)

Gy (8.t 0= My He@ g ) (8,F') (0 —HETM— (I1I-8a)
D>(05(t’t,) = %Mo—*ew—id>(0)(t,t')w—%eTMo—-; (I1-8b)
D<) (t,t') =My tew < (t,t")wo—tetMy—} (I1-8c)

with similar equations for the time Fourier transforms.

In the above equations € is a unitary matrix the columns of which are discrete
analogues of waves which span the null spaces of {lwy?— M, P M;,—1kE
irreducible part of the first Brillouin zone}. The dimensionality of each of these
spaces equals the number of distinct wave vectors in the star of the associated
K. In explicit form

e(Kj;lxa) = N—te (x|Kj) exp[iK-x(Ix)]

where e(kj) is the polarization vector with wave vector k and branch index
j and where X(lx) is the site vector of the x»th atom in the Ith unit cell. w is
a diagonal matrix composed of phonon frequencies wy;. For the moment we
confine the interest to the perfect lattice quantities. A straightforward and
standard argument produces the following explicit expressions for the Fourier
transforms of

dy> (K K'j't,t) = A(K —K')8;;,d> (< (Kjst b)) (I1-9)

d>o(Kj;0) =jo(Kj;w) exp(fw) (I1-10a)
o real

d<(kj;00) =jo(Kj; ) (II-10Db)

where the spectral density function j, is given by

Jo(kjio) = exp( — o)1+ Nig0l6( — o) + N9+ ong)}  (LI-11)
N kio = (a,*k,-ak,->0 = [exp( ﬂwk,-) — l]_l, w real

Acta Chem. Scand. 25 (1971) No. 7



THERMODYNAMICS OF IMPERFECT CRYSTALS 2377

With recourse to Zubarev’s work 1° we may write
go(kjiw), = | [exp(f’) —1jo(kjs0')do'[[(0 £6)~ '] (II-12a)
w,w real, r=>+,a=> —

The temperature dependent terms cancel out, as they should in a gas of nonin-
teracting phonons, whereupon

go(kj;w),(a, =2wy;/[(w £ 10)2 — wy?], w real (I1-12b)

Substituting the latter expression into the time Fourier transform of (II-8a)
and making use of the above step (ii) we find

Gy(w)=M;(e{diag[(w? — w?)1i=Kkj=1,3nN]}e" )M,
=M, (&{lw? - diag[w?i=1,3nN]}et) M, (1I-13)
=M, (10? = My @M, 1) M = (Myw? — ) = Ly(w) ™
which obviously implies (II-3a). In explicit form the first of the relations con-
tained in (II-13) reads

Golla, '’ Bioo) = NN (Mo M)+ 3 e, (#lKj)e* (' j) x
ki
(00 — wy2) t explik-{X(Ix) — X(I'x)}] (I1-14)

which is the well known bilinear expansion of Gy(w) normally obtained 2
by arguments which, essentially, correspond to a reversion of the sequence of
relations (II-13). Except for an obvious change of notation the perturbed lattice
equation (II-3b), and hence (II-3c), follows in an entirely similar manner by
temporarily interpreting the columns of € as the set of orthonormal (molecular
type) eigenvectors of M—i®M—*. The fact that we do not know a prior: the ex-
plicit form of these eigenvectors is of no consequence to a formal argument since
their existence is guaranteed by general and well known theorems of linear
algebra. In conformity with the usual terminology ' we define the finite tem-
perature propagator, G, (iw,), by the relations

B
Go(4,Bjiw,)=(387) | 5 exp(—iw,7)G)(4,B;7)dr (I1-15a)
Go(4,B;7) = 2 exp(iv,7)G (4 ,Bjiw,) (II-15Db)
where 7=1t, and where i
6)(0)(A B;7)= <TA(T)B(O)>(0) (II-16)

is the causal Green’s function analytically continued to the interval
(—eB,if)13,14 and periodically repeated along the imaginary time axis. T' is
the Dyson time ordering operator. In the Bose case the cyclic trace property
implies

Go(d,B;t+ ) =G o(4,B;1), ~ f<1<0= > w,=27n/p (I1-17)

In order to establish a link between G, and G, we consider the relation
Go(d,B;t)=D>4(4,Bit,0)= | exp(—1w')D>y(4,B;0")dw’,7>0 (II-18)
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Insertion of (II-18) into the first of the equations (1I-15) yields

Q(o)(A,B;iwn)=(l/ﬂ)fexp(—iw,,t) [ exp(—1a)D> o (A, B0’ )dw'dr
o oo (11-19)

=-(1/8) _}; [exp(Bo’) =11 (4, Bie" ) o’ [[( - iw,) — o']

Calling to mind (II-4) and comparing with (II-12a) one obtains

Go(4,B;0)= — fGo)(4,B; —iw,~»> ) (II-20a)
and a similar relation for g (4,4 wj;0) =g, (kiK' ;0), viz.
9(0)(kj:k’j'§w) == ﬂo(/(t))(kj,kl?"; —iw,~> ) (11-20b)

We shall refer to g (kj,k’j’;iw,) as the phonon propagator. Alternatively
one could give explicit recognition to the ate and aa' components of of ot
and work with two propagators; one for backward propagation, a'a, and one
for forward propagation, aa'. This, in fact, is the convention adopted by Ma-
radudin ! in the aforementioned treatment of mass disorder. For mathematical
simplicity, but at the expense of some pictorial connotation in the perturbation
expansion to appear shortly, we have chosen to employ the combined of At
propagator, which form is frequently encountered in works on anharmonic
lattices.1%,18¢ Both procedures are utilized concurrently by Mattuck 17 in his
T=0 discussion of the dressing of Einstein phonons brought about by the
turning on of interatomic correlations in a linear chain.

An expression for the perfect lattice phonon propagator

9o(kj.K'j"iw,) = A(k—K') 65.94(Kj3i0,,) (II-21)
is readily obtained by contour integration,’® or by applying (II-15a)

to T Ayj(r)Ai(0)),. Alternatively, one could also make use of (II-12b) in
a reserved (II-20b). In any case

.. - 20)]“ 1 2(,0*‘ 1
kjjiw,)= Lo ===
o(kjiie,) B (lw,)?— wy? B o2+ wy?

(I1-22)

III. EXPANSION OF THE DEFECTIVE LATTICE PROPAGATOR

Although we are primarily interested in the Fourier components g(kj,k’j’;
iw,) it is convenient to expand g(kj,k'j’;z) in powers of the defect induced in-
teractions and to read off the Fourier components afterwards. The expansion
in mind, which is a general recipe of many-body (and field) theory, is carried
out in the interaction representation, viz.

g (kj.K'j"7) = KT A7) A (0)> =

© (—1)*8 B = — — —
- 3 E T an [an @) - Bn) @Al gy

@

(-1)" B B — —
/2 ”—'_f dry-Jdv,(T{H (v,)---Hy(7,)})o
n=0 MN. o 0
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THERMODYNAMICS OF IMPERFECT CRYSTALS 2379

where H, is the defect part of the Hamiltonian and where O is an operator in
the interaction picture, i.e. O(t)=exp(vH,)Oexp(—1H,). The derivation of
this expansion (for general field operators) has been discussed in detail by
several authors 12,17 and need not be repeated here. The Hamiltonian of the
imperfect lattice may be expressed in terms of direct lattice operators as

H=Hy+H,=H,+V,+T, A1I—-2)
Hy=1} 3 p200)[ Mox+3 3 5 @l Bug(le)uy(l) (IT1-2a)
Vi=3 rz’ﬂ SD(Inasl' ' By (e Yuy(U'") (I1-2b)
T,= 7% P 2(l)(1/ M (Ix) — 1| M o) = %I’% P2 (U)o (L) [ (1 — x(0))]/ Mo (I11-2¢)

where M (lx)=[1-x(lx)]Mo,. For notational convenience we introduce a
diagonal matrix A the elements of which are defined as

Alxasl's’ B) = 0w Osuser 0,5 — ) (1) [[1 — y(I2¢)] (ITI-3a)
and a matrix ¥ with elements
w(lxo;l's' B) = 16D (Inco;l ' BY(M 03 M or)—* (I1I-3b)
Then after a space Fourier transformation we may write
V=132 2 vi(KjK')) sl olicy (IL-4a)
ki K7’
Ty=3% g;'tl(kjlk’j')‘fu*k,- Ve (I11-4Db)
7 K7
where
V,=0 ¥ etWew ™t and t, =0 ietAew ™t (I1I-5)
and where
";)ka = (lT._kf — Qg and i)_ﬁk,' = a'fkj — O—;j (III-G)

Omitting the zero point energy we also have Hy=> wyalya;. We now
&

v

proceed to a graphical treatment of (I11-1). To evalutate the thermal averages
we make use of Wick’s theorem 17 and take the sum over products of all pos-
sible contractions (a contraction =(..->, value of a “time” ordered product
of two phonon field operators of or <)), each product being depicted by a Feyn-
mann diagram consisting of free phonon lines (contractions) beginning and/or
terminating at vertices H,(;) on a vertical z-axis. Since the disconnected parts
of disconnected diagrams associated with the numerator of (I1I-1) contribute
independently their sum becomes a multiplicative factor which cancels the
thermalized vacuum amplitude in the denominator (linked cluster theorem
for the propagator 17). It is sufficient therefore to take into account only the
connected numerator diagrams. In order to get at the Fourier components
9(kjK'j'iw,) we expand each contraction in a Fourier series (see LI-15b),
as is customary,’? and make use of the vertex conservation of w,’s imposed
by the z-integrations, viz.

p :
fexp(2nilt| B)dt = 6,08, for I=some integer (I11-7)
0
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For convenience we start by considering separately the two restricted imper-
fections

A:H,=V,,Ty=0and B: H,=7,,V,=0

Subsequently the desired H,=V,+T, results will be derived by substituting
for the free phonon lines in the case A diagrams with clothed case B propa-
gators.

A. Phonons interacting via force field perturbations

To calculate g(kjk'j';iw,) we draw all possible distinct and connected
diagrams in which a (kj) line leaves at the top and a (k’j’) line enters from the

bottom. We note that since there are only two o operators associated with
each v, element there will be only two lines connected with each vertex.
For reasons to become apparent shortly we choose to depict the introduction
of a V, term into a diagram in either of two ways as displayed in Fig. 1. Since

vl(k1j1|knja)dfk,i,(rn)dkj,(7n) (a)

vi(—KyJal — kljl)di,i.(Tn)Q{—k,i,(Tn)
T, =v,(—Kyjsl —kxjx)ﬁ‘{k,i,(fn)dfklj.(fn)

Fig. 1. Equivalent vertex arrangements.

the defective crystal is no longer invariant under a rigid body translation
through one of the perfect lattice translation vectors, there will be no wave
vector conservation at the vertices. The rules for calculating the contribution
of any particular diagram may be summarized as follows:

1) For each vertex with lines (k,j,) leaving, (K,j,) entering, there is a factor
3v,(K,j,/Ks7,) from (III-4a), a factor (—1) from (III-1), and a factor f from
the t-integrations.

2) For each phonon line (kj) there is a factor g,(kj;iw,).

3) At each vertex the sum of w,’s leaving should equal the sum of w,’s
entering; since we consider only connected diagrams, and since there are only
two lines associated with every vertex, there will be no summation over
independent n’s.

4) For each nth order diagram there is a factor (n!)™ from (III-1).

As it happens all connected diagrams obtainable from the numerator of
(ITI-1) may be summed to infinite order in closed form. To verify this assertion
it suffices to consider a few low order diagrams. The zeroth order contribution
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is exhausted by the diagonal perfect lattice propagator (II-21). To the first
order one obtains two diagrams which may be identified with the graphs in
Fig. 1 provided that one sets: k, =K, j, =j,k,=K’,j,=5'. According to the above
rules, 1) to 4), Fig. 1 a) and b) then give rise to the contributions
go(Kjiw,)(— lﬁ)vl(lek ') 90(Kj 51 0,,) (111-8a)
Jo(kjsim,)(— 3801 (— K| — Kj)ge(Kj i) (I1I-8b)
By definition v, is hermitean (see (I1I-5)). Thus v,(kj|k’j’) equals v,( —K'j’| — kj).
Consequently one may allow for first order perturbation by discarding (III-8b)
and suppressing the factor } appearing in (III-8a). There are eight diagrams

stemming from second order perturbations, four of which are shown in Fig. 2
Translation of Fig. 2 a) to d) yields

a) b) c) d)

Fig. 2. Second order propagator diagrams.

$90(Kjstw,) Z( 381 (KjK,71)90(Kydist,)(— 3B)vi (K, j1 K5 ) 90K stw,) (IT1-9a)
P LYHION Z( 3801 (KK J1)g0(K1j 1500, )(— 3801 ( =K' | —K171) 90K s ,)

(III-9b)
190(K5t0,) 2 (= 3B)vi(—Kijal — Kj)go(Kyjpie,)( — 381 (K1 iK' ) g0 (K sie,)
ki (I1I-9c)
$90(Kjsiw,) > (= 3B)vi(—Kyjil = Kj)ge(Kijiw,)(— B)vi(— K| — Ky j,) x
o x 7o(Kj'siw,)
(I1I-9d)

By virtue of the hermiteicity of v, each of the expressions (III-9b, ¢, d) is
identical to (I1I-9a). The four remaining diagrams may be obtained from Fig.
2a) to d) by transposing the vertical order of the interaction lines, which process
does not alter the contributions of any of the four diagrams. Thus, the entire
second order contribution is given by

yo(kjﬂwn)g (— Bs(kjlkyj1)g0(Kygrsiew,)(— B, (K171K5")g0(Kj i w,,) (ITI-10)

In the nth order case there will be a total of n!2" diagrams all of which are
equivalent. The term n! stems from the n! different ways of permuting the
Vi(ry)---Vi(r,) on the r-axis, while 2" comes about because every vertex
of the Fig la) type may be replaced by the Fig. 1b) type and vice versa. It is
sufficient therefore to consider only one nth order diagram provided that its
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contribution is augmented by omission of the factor } associated with every
v;(Kyj,1Kzjs) term (see 1) above), and by neglection of the above rule 4). Hence
9o(Kj K'j"iw,) = A(k—K') Gijr go(Kj5i0,) + g0(Kjsiw,)( — B)v, (Kjlk'j") X

(K9 5iw,) + go(Kjsiw,) 2 (= Bvi(Kjlkj1)ge(K1j1500,)(— B) x

11

v;(Ky511K’5")g0(K'5 5 ),) +$o(kj§iwn)k% (= By(kjlk, ;) % (I11-11)
50(k1j1§7:wn)k2 (= Bvy(K171|Kej2)g0(Kagasiw,)( — B)vy(Kyjalk'y) x

e
Jo(Kg5i0,) 4= - o e
or in matrix notation
g(i(l)”) =g0(iwn) +g0(7:(.0”)( - ﬂ)vlgO(iwn) +g0(iwn)( - ﬂ)vlgo(iwn) X

(= BIVigoliw,) + - -+ (I11-12)
which is an iterative solution to the Dyson equation
gliow,)=go(iw,)+gliw,)(— )V.&(iw,) (ITI-13)
with (— )v; as the self energy part. Solving for g(iw,) one obtains
gliw,)=[1-go(w,)(— B)Vi] g (tw,) (I1I-14)

In order to establish contact with direct lattice Lifshitz theory we subject
(III-13) to the process indicated by (II-20b) to get

g(w) = go(®) + go( @)V, g(w) (ITI-15)
Insertion of this expression into the time Fourier transform of (II-8a) yields
G(w) = Gy() + Gy(w)Mtewt2v,wietM}G(w) (TI1-16)

In view of the definition of v,, (III-5), (III-16) may be rewritten as

G(w) = Gy(w) + Gy(0)My} 2WM}G(w)

=Go(w) + Gy(0) IPG(w) =DC(w) =[1 — Gy(w) P 1Gy(w)  (III-17)
which is the 7', =0 restriction of (II-3c). In principle (III-17) suffices to de-

termine the perturbed frequency spectrum. By taking into account (II-13)
and a corresponding equation for G(w) the familiar (distributional) relation

3nN
F g (0?)=(3nN)7 igl O(w? — w¥)) = (3nNn)Um ; (02— a?g)?

(w_% means that we approach the real w? axis from below.)
for the normalized spectrum of squared frequencies w? may be expressed as

F g (?) = (3nNa)Um{TrM: G o, (w_2)M g1}
where the invariance of trace against a similarity transformation has been
exploited. Consequently, defect induced changes in thermodynamic state func-

tions may be discussed on the basis of (ITI-17). It is not without interest, how-
ever, to attempt a direct perturbative attack on the Helmholz free energy

Q=—-f"Unz (I11-18)
Acta Chem. Scand. 25 (1971) No. 7
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where z is the partition function 7r exp(— Hp). In accordance with a by now
well known prescription of many-body theory * we define an operator S(f)
by writing the density matrix o(f) as

o(B)=exp(—[Ho+ H;]1B)=exp(—Hyp)S(B) (I11-19)
Since o(f) is determined by the Bloch equation
—do[0p=(H,+ H)e (I11-20)
S(B) must satisfy _
08/0f= —H(B)S (TII-21)
where
H () =exp(H,p)H exp(— H,p) (ITI-22)

Integrating from 0 to B with allowance for the initial condition §(0)=1,
iterating the result, and transforming all upper integration limits to # by using
the Dyson ordering operator one finally obtains

© (_1)8 B — —
smexp(— 000+ 3 T e [ dr T e Haw o) (111:2)
As in the propagator case we represent the various terms in (III-23) by dia-
grams.’? However, presently there will be no external lines since the
HAxi(t)ATk(0) operators in the numerator of (ITI-1) do not appear in (I1I-23).
Since 2 is our primary concern we exploit the effect of taking the logarithm
of z which is to eliminate all unlinked diagrams,'?> whence

4Q=0-0y=—pLL(B) (IT1-24)

where () is the sum of all linked parts. The first, second, and third order
linked diagrams are shown in Fig. 3a, Fig. 3b, and in Fig. 4, respectively. By
the suitably modified rules 1) to 4) the contribution of the first order “oyster”
to 402 becomes

(=B S SakjioN— BVikiKi) = (=26 S Tr((~Bgolio,vs)

m=—o0 Kj m=—oo0

o 4

a)

I'ig. 3a. Instantaneous phonon (=quantum of collective motion) contributing to the
Helmholz free energy. b. Second order linked 4£2 graphs.

* The approach briefly outlined below, (II1-19 to 24), is usually formulated in terms of a
grand canonical ensemble.’? The formally simple system of interest here can be conveniently
dealt with by using a canonical ensemble which, incidentally, was the ensemble employed in
the initial and decisive work of Matsubara.!®
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Again in view of the hermiteicity of v, each of the two second order diagrams
in Fig. 3b gives rise to one half of the total second order term

(=287 % }) %yo(kj;iwm)( -~ B) k% v (KjlK151)90(K1J1580,,)(— vy (K5, Kj)

M =~—0

~(=207 3 TrN(-AgeliwVi?

m=—

Similarly, each of the topologically equivalent third order diagrams in Fig. 4
contributes one eighth of

(=287 5 Tr(/3H(- Blgntioo v,
Fig. 4. Third order linked 42 graphs.

In the general nth order case it is a matter of trivial combinatorics to show
that there are (n—1)!2"1 diagrams, each one contributing

= 3 (=) eoy = e -2p 3 Tri(- Doy
Consequently the total nth order therm becomes
(=287 5 _Tr(3) U-Pastio vy

whence

M =—00

ag=ep 5 75 (—3)U-Paiony QL)

Assuming the 3 series to converge and keeping in mind that

n=1
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In(1—2)= 2~ a2 = .~ 2" (i < 1)

we rewrite (I1I-25) as
4Q2=(2p)1 2 TrIn(1 + fgy(iw,)Vy)

= (26 Shnlt + fgefio)vy (H26)

The value of a determinant is left unchanged upon a similarity transformation
performed on the associated matrix. Thus (see (II-13), (II-22), and (III-5))

402 =(2p)1 3 In|]1 + ewtdiag{2wy/[w,2% + w?]}0 et Wew twiet|
=(28)7 2 In|1 - (M, *e diag{[ — 0,2 — wy?] ) eMy ) 5| (I11-27)
=(kT/2) 3 In|1 — G(tw,,) 5P|

which is the T'; =0 restriction of an expression obtained in a nonperturbative
manner by Maradudin,? who made use of an infinite product representation
for sinh(z).

B. Phonons interacting via mass defects

The effects of mass changes on the propagator and on {2 may be evaluated
in a fashion almost identical to the one encountered in the preceding subsection.
We shall therefore dwell rather briefly on the V,=0 case. With allowance
for the following relations

T Aty Bujrw, o= T A Bhijsiw, Do =
= — (T Byjsltiitw,eg= — TV Ayt w, 0=

2(tw,) 1 (tw,) \
Wy;

ﬂ (iwn)z — wki2 = - yO(k.?;,"wn)

TPV Byjsto,ye= T By Blyjstw, )= — go(Kjitw,)
one finds for the propagator
ki K'j vw,) = Ak —K')d;i64Kjriw,) — (tw,) ok 29,(Kjtm,) x
(= ALK ) o(K'f i) oy (i0,) + (0, )i 2eoKisi0,) % (IIL-28)
Z (— Bty (KjlK171)90(K1gie,)( — Bt (K1 ja[K'S ) go(K'G i, Vi Hiw,) 4+« -«

kifa

or in matrix notation
g(iwn) =g0(iwn) + mi;l ( - l)m(iwn)w—l{g()(iwn)( - ﬁ)tl}mgo(iwn)w—l(iwn)

=go(tw,) + (io,)0™( éo {go(iw,)(BIt}") g0 (lw, )0 iw,) — (III-29)
— (i0,)07g,i0,)0 (iv,)
= go(iw,) + (10,)07([1 — go(iw,) (At I — 1)go(iw, )0 ((w,)
Acta Chem. Scand. 25 (1971) No. 7
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In view of (I1-20b) and (III-29)
g(w) =gy() + W?*@ ([T + gy(w)t; ] — 1)gg(w)w? (I11-30)

If only a few diagonal elements of A differ from zero (by definition, (I11-3a),
the off diagonal elements vanish) it is advantageous to replace the above in-
dicated matrix inversion by a corresponding process in direct lattice space.
If we set t,=EF, where E=w!e'A and F=e¢ew!, and rearrange, (I1I-30)
becomes*

g(w) = go() — w*@7go(w)E(1 + Fgo(w)E) Fgy(w)w™

= go(@) — 0?07 1gy(0)E(1 + ew?w™igy(w)w et A) F g (w)w™

= go(0) — 0?07 gy (w)E(1 +{M; P M H{ M Gy(0)My#}2A)TF gy ()™

= go(®) — 0?0 7gy(w)E(1 + [0 MgGy(w)Mot} — 1]24)7Fgy(w)™  (I1I-31)
the total expression still referring to k space. To complete the transformation
to position representation we insert (III-31) into a time Fourier transformed
(I1-8a), thereby arriving at
G(w) = Go(w) — 0?Go(w)Mg}2A(1 + [w*{ MytGo( )Mt} — 112A) I M4tGy(w)

= Gy(@) — 0*Gy(@)2A[(1 — 24)My ™ + 0*Gy()2AT 16y )

= Gy(w) + 0*Go(@)(My — M)[1 — 0?Gy(@)(My — M) Gy( )

= Gy(w) + Gy(w) w?(My — M){1 + Gy(w) ?*(My— M) +

+ o+ [Go(@) 0™ (Mg~ M)]" + -Gy () (I11-32)
= Gy(@) + Gy() 0*(My — M) Gy(w) + Gy(w) *(M, — M)X
XGy(w)w*(My—M)Gy(w)++- -+ -

= Gy(@) + Go(@){ 0*(My — M)}G(w)
=[1-Gy(w)}{0*(My— M)}TGo(w)

(ITI-32) is readily recognized as the V=0 restriction of (II-3¢). The analogue
of (I1I-25) becomes

40=@2p* S Tr él(——;){ﬂgo@wm)tl}” (11-33)

which expression may be rearranged as follows
4Q =287 2Tr In(1 - fgo(iow,)t;) = (28) 2|1 — fgy(iw,)t,|
=(2p)1 glnll —entdiag{wy;/[w,2+ wk,zi”}a)*emm
2p) glnll + ewdiag{[ — w,? — wy2] 1}et2A|
2p™ glnll +eetMy i@ M "le diag{[ — 0,2 — wy?] 1}et2A]
2p)1 glnll +D,Gy(tw,,)2A]
2p)1 glnﬂ +(My(tw,,)?Gy(tw,,) — 1)24]

(ITI-34)

* A rearranged (III-15) similar to (III-31) can be obtained by an analogous “splitting” of v,.

Acta Chem. Scand. 25 (1971) No. 7



THERMODYNAMICS OF IMPERFECT CRYSTALS 2387
=(28)7 2 In|MM™ — Gy (iw,,) (i) (Mo — M) MM

M|
M

(1I1-34) is the V; =0 counterpart of (III-27).

= (WT/2) 3 In 01— Gy, )i, (Mg — M)

C. Combined effect of mass changes and force
constant alterations

With the preceding results in hand we turn to the case of a simultaneous
switching on of mass and force constant perturbations. This time there will

m=0
reason for the term n!2” has already been stated in subsection A. The sum
n

> comes about because the nth order diagrams differ among themselves in
m=0

be a total of n!2" i (:;) nth order connected propagator diagrams. The

the number of v; vertices, m, and in the number of ¢, vertices, n—m,
included. For any specific choice of m (0 <m <) and for some fixed arrange-
ment of free phonon lines there are nl/[(n—m)!m!] ways of permuting the
m v, labels and the (n—m) ¢, labels on the vertices. Hence the appearance of
binomial coefficients. If we group the diagrams according to their m-order
(as opposed to the previous n-order grouping) it becomes possible to sum all
diagrams to infinite order by simply substituting for the free phonon lines in
the T, =0, V,+0 diagrams with clothed V,=0, T',+0 propagators. Symboli-
cally

- = e arTTWee Wt

- = -+ <——.v‘2/~<= " " (III-35)
4}

where

ETTTTIT e b AN e Al ANNN e AN s o ¢ o

Translation of (III-35) yields

glw,)=gllw,)+g(iw,)V1gi(lw,) +- - -
=g(iw,) +glio,)V,8(iw,) (I11-36)
= (1 _gt(iwn)vl)—lgt(iwn)
where g; (w,) is the propagator matrix (III-29) relabelled. By substitution
of (III-29) into (III-36) one easily sees that the latter expression implies a
correct number of nth order diagrams, for all »’s, and that any particular dia-
gram is represented once and only once. In view of (II1-17) and (III-32) we
obtain from (III-36)
G(w)=Gyw)+ Gw) PG (w)+ -« -« -
=[1-G(w) PTG w) (ITI-37)
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where G, (w) is to be identified with the displacement-displacement Green’s
function matrix in the V,=0 case. To recover the V,40, 7';40 result of the
Lifshitz theory we rewrite (I1I-37) as follows

G(w)=[1-Gy(w)dP][1 - Gy(w)w*(My— M) Gy(w)
={[1 - Gy(w)*(My—M)][1 - G/(w) IP1}Gy(w)
={1 — Gy(w) 0¥ (Mg — M) — [Gy( ) — Gy ) (Mg — M)Giy( )] 6B} Gy ()
= {1 — Gy(0)*(My— M) — Gyo(0) D} 1Gy ()
=[1 — Gy(w){ (Mg — M) + 6@ }]Gy() (IT1-38)

which expression coincides with (II-3c). We divide the linked £ graphs into
two classes. The first encompasses all diagrams which contain only ¢,-vertices.
Below 42, denotes the associated contribution, given by (I1I-34), The dia-
grams in the second class are convenlently grouped into subsets according to
their m-order (m=1, 2,...c0) where, again, m is the number of v,-vertices.
By partitioning of 1ntegers and a sumple combinatorial argument it may be
shown that the contribution from any subset can be obtained exactly as in
subsection A provided that the free phonon lines are replaced by fully dressed
T,+0, V,=0 propagators. To fix the ideas let us consider the nth order
diagrams in the mth subset. The diagrams in question, which contain m

v,-vertices and (n—m) t;-vertices, can be separated into (:n"_ i) groups in

one-to-one correspondence with partitions {P,"}={ky,ks, --,k,,; % k;=(n—m)}.
i=1

We first reduce the contents of each group by exploiting the hermiteicity
of v, and t, to get rid of (n — 1) of the n factors (}) belonging to the » matrix
elements. As before the remaining factor (}) is to be lumped in with the term
(— B) ! appearing in (III-24). All vertices are now of the Fig. la type, say.
Then the common characteristic of all graphs in the same P,* group (cor-
responding to some fixed combination k,,---,k,, thus) may be formulated
as follows:

Pick out an arbitrary v,-vertex. Upon leaving the wiggly line from the left
and going through the ‘circuit”’ by staying on free phonon lines or interaction
wiggles at all times the number of ¢,-vertices encountered between the ith
and the (¢4 1)th »,-vertex equals k; the first and the (m + 1)th v,-vertex both
referring to the one from which we departed.

Translating the diagrams into algebraic expressions and summing over
(kj) labels it follows at once that all diagrams with a common P,”* designation
are equivalent. (Diagrams belonging to different P, groups may, by virtue
of the cyclic trace property, or may not, if so mainly because of different
numbers of mixed {3 contractions, be equivalent.) To calculate the entire

contribution of all the 72_ i) groups we consequently select representa-

tives with different P,” labels and multiply each representative by the number
of diagrams, P,"N, in its associated group. The set {P,'N;P,"=1,.

("‘ 1)} is determined in the following way: Irrespective of the partition at
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hand there is a factor (m—1)! :; stemming from the different ways of

combining the m v, and the n 7, designations, and from the various orders
of appearance of the m wv,(r)-(fixed j’s)-vertices encountered when going
through the dxagrams Given a fixed and ordered v,-7; combination, and a fixed
partition, P,", then upon going along the closed ““circuit” of phonon lines and
interaction w1ggles as previously described the number of different and allow-
able arrangements of phonon lines encountered between the first and the second
v,-vertex is (n;m) kq!. (n;m) represents the various ways of picking out
1 1
k, t,-vertices among the (n—m) vertices which have not already been attri-
buted v, labels, and k,! takes into account the different ways of getting from
one v;-vertex to another by threading &, ,-vertices. Similarly there is a factor

(n“?—l‘h) k,! associated with those diagram parts that must be threaded
2

to get from the second to the third v,-vertex. Altogether

PN =(m—1)! <;‘L) ':12: {(n - Zi> k,.!}] k)

i—1

where Yi= > kj, i>1
i=1

Si =0, i=1

By writing out the binomial coefficients explicitly and by keeping in mind that
k,,=(n—m)— >m, one sees that P,"N simplifies to
" n! n!

PN = —(m—l)!: m
In view of the term (n!)™ appearing in (III-23) the “effective” multlphcatlve
factor to be associated with each P,” group representative is (P,"N/n!)=
Thus the “effective’” factor depends only on the m-order, and this is exactly
what must be the case to justify our making use of previous results in the man-
ner stated above and depicted in Fig. 5. Consequently

4040+ 2py* S T3 —1 (= Pgilio,)vy)"

m=—00 n=1

3

Iig. 5. Linked diagrammatic expansion of 42 (V,#+0, T,+0) expressed in terms of
fully dressed (V,=0) propagators.
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=4+ (28)2 2 In|l + fg,(iwom)V4]
=40+ (28)! Zlnll - G(tw,,) 0P|

=243k ‘xﬂ' {1 = Gy(ie,,)(i,)2(M — M)}{1 - G iww,,) 6}

(IT1-39)

To transform (III-39) into a somewhat more revealing form we copy the matrix
manipulations occurring in the last few lines preceding (ITI-38), and find

IMol
IMI

which expression constitutes the desired generalization of (ITI-27) and (I1I-34).

4Q=(kT/2) SIn — Gylim,){ (i, (M — M) + 60} (ITI-40)

IV. QUESTIONS OF CONVERGENCE

The preceding section contains a considerable amount of hazardous
reasoning in view of the apparent carelessness exhibited while treating the
various infinite series resulting from graphical summations to infinite order.
We shall not attempt to justify the dubious manipulations by setting out to
prove the convergence of the series referred to. On the contrary, we intend to
give a counter-example in which two of the expansions diverge. Consider the
case of an isolated substitutional impurity atom imbedded in a cubic Bravais
lattice. For the geometric progression

(1—{go(lw, )t =11 +{go(tw,)(B)t;} + {ge(e,) (B + - -+ (IV-1)
+{&oliw,) (Bt} +
and the Taylor expansion

In(1 — {gy(ie,)(BIt:}) = 2 ~ (Zali,)(B)ts} — Hgalioo, (Bt~
~ 2 l@io )Pty (VD)

to converge it is necessary (and sufficient) that all eigenvalues of
&oliw,)(A)t, = [diag(wy/[w,? + wi]) [(we'(24) ewt)

be less than one in modulus.2! As it stands this matrix is inconvenient for in-
vestigating whether it fulfills, or fails to comply with, the necessary condition.
However, since the eigenvalues of a matrix are left unaltered by a similarity
transformation we may alternatively look into the matrix

Q=cw¥g (in,) (At }o e =& diag{ wy?/ [0, +wi;*]}e](24)
Recalling the definition of A, (III-3a), invoking the orthonormality of the vec-

tors {e(kj); fixed k;j=1,3}, and making use of a simple space group argument
one easily verifies that the eigenvalue condition

Mu—Q=0
is satisfied for
={(1/3N) g(wkfz/[wn2+ oV H = 2/[1 =21}
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By choosing y in the interval (},1) the quantity x/[1 — x] can be made to assume
any value between 1 and + co. Thus, replacing one of the perfect lattice
constituents by a suitably chosen impurity atom of mass smaller than the one
possessed by the host lattice atoms, |z can be made to exceed unity (whether
this thought experiment is physically realizable for any , and some given
perfect lattice frequency spectrum is immaterial in the present context),
in which case (IV-1) and (IV-2) both diverge. This, in turn, would seem to in-
validate the reasoning in subsections II1 B and IIT C. Moreover it may be shown
in a similar manner that the expansions encountered in subsection III A cannot
generally be assumed to converge. This situation is not alien to many-body
and field theory where one is often compelled to run the risk of extrapolating
end results into regions wherein underlying expansions actually diverge.l?,?
By virtue of the formal exactness of the Lifshitz theory our present calculation
furnishes an example of final results which can be rigorously proved to remain
valid despite the occurrence of divergencies.

V. CONCLUDING REMARKS

The applications of many-body concepts in physics and in physical chem-
istry are multitudinous. The present rederivation of some of the basic for-
mulas of the Lifshitz theory presumably constitutes a simple illustration;
the propagator technique being put to work on a comparatively transparent
solid state problem. However, the author hopes that the usefulness of the
viewpoint presently adopted may to some extent transcend the mere provision
of a treatment being suitable for illustration purposes. It is probably expressing
a truism to state that the vibrating crystal lattice containing defects (other
than fixed distributions of a few truly isotopic substitutions) remains a chal-
lenge and is likely to do so for some time to come. Despite the advent of high-
speed computers a detailed investigation of a defective lattice, as represented
by a reasonably realistic crystal model, still poses non-trivial problems. In
most cases calculations become prohibitively difficult unless simplifications
are invoked, and at present the development of systematic approximation
schemes appears to be attracting considerable attention. Hitherto, however, it
seems that the major efforts within the framework of Green’s function methods
have been made to overcome the inherent complications of mass disordered
lattices (see the paper of Leath and Goodman 2 and references contained there-
in), so that there remain unsolved difficulties in taking account of force field
perturbations even in connection with isolated ¢ point’’ defects. As a consequence
of this, no doubt, a reasonably diligent search of the literature did not bring
to light any published work on the latter type of imperfections where the
Lifshitz theory proper is applied to perturbations extending beyond one or
two shells of atoms surrounding an impurity or vacancy site. Although highly
localized model defects still require a considerable effort if an extensive descrip-
tion is aimed at,* such cases have by now become tractable. However, by

* This point may be appreciated from a recent and highly interesting article written by
Lakatos and Krumhansl,?* which paper we take to be representative of the art in its present
status.
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restricting the range of applicability of the Lifshitz method to local imper-
fections one obtains only a short-lived reprieve. Warranted elaborations of
localized model defects (e.g. incorporation of the long-range relaxation effects
which are likely to appear in response to the introduction of even “mild”
lattice misfits,25 and refinements in the depiction of the electronic structure
of imperfections 26,27 would in many cases seem to call for recognition of defect
induced interactions receiving non-negligible contributions from extensive
regions of the system in question. Sometimes a space Fourier transformation
of a slowly varying part of the perturbation would lead to the projection of
predominant and numerically obtainable contributions on a limited region in
kj-space. In other cases a restriction of the scope of the investigation to partic-
ular aspects of the defect problem would make it plausible to assume the
most important part of the relevant interactions to be localized in kj-space.?®
In general, if for some reason or other it makes sense to account for the long-
range part (the precise definition of which would depend on the capacity of
the computer at hand) of a “point” defect by writing

6¢l(=long-mnge) — 5¢ - 6¢s(=short-mnge)
=M, 10P'M,}
and by subsequently neglecting suitable portions of

v)!= o tetPlewt (some elements of which would occasionally
vanish for symmetry reasons)

then one might

i) retain the phonon representation as the basic reference frame while
treating the effects of (M,—M) and 09P* on g(tw,) in an exact manner by in-
verting (~ diagonalizing) a low order matrix referring to position repre-
sentation (see (II1I-31) and footnote on page 2386); and

ii) continue the modifying of the already partially clothed propagator(s)
by invoking a selective summation adaptation of the argument in section III C,
thereby including also the effects of a simplified v,

Thus one could, possibly, exploit the propagator viewpoint to arrive at
useful approximations which, although obtainable without the use of many-
body methodology, would seem unwarranted from the standpoint of the stand-
ard normal mode problem. The author intends to pursue this point further
by presenting the results of numerical calculations on specific defect systems
in a subsequent paper. In conlusion of the present one it should be added that
the propagator method may readily be extended to recover also Wagner’s
generalization 2° of the Lifshitz theory to defects which do not conserve the
total number of degrees of freedom. Such cases have been omitted here since
their inclusion would have increased the bookkeeping without adding appre-
ciably to the underlying theme.

Acknowledgement. Thanks are due to The Technical University of Norway for a fel-
lowship during the tenure of which the present work was carried out.
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